Performa Material Dalam Upaya Mengurangi Panas Kota Sorong di Rusun Politeknik Kelautan dan Perikanan Sorong

Rezza Ruzuqi, Eko Tavip Maryanto

Abstract


Abstract

Heat-absorbing material is a natural or synthetic material applied to withstand high temperatures. In civil applications, to get comfort in carrying out daily activities, heat-absorbing materials are widely chosen because of their ability of these materials. In nature, there are many heat-absorbing materials such as soil, mineral rocks, and others. The raw material is processed or used directly applied as a heat-absorbing material. Sorong city is that city has the most critical condition and has become challenging for many cities in the problem of the urban heat island. This condition spurred the emergence of an Urban Heat Island (UHI) phenomenon. In an attempt at the heat generated, various materials used to apply in several ways. These materials include Cast Concrete Materials, Asphalt Materials, and Soil Materials. In this study, the performance of the materials was determined. The measuring instrument used is a measuring instrument commonly used to measure temperature. Measurements start from morning until night. The results obtained that cast concrete material has better performance than other materials when applied as a roof to reduce heat. While asphalt is a good material when applied as road material. With the average temperature produced by each material, morning= , afternoon= , evening= , and night  and morning= , afternoon= , evening= , and night .

Keywords: Urban Heat Island (UHI), Cast Concrete Material, Asphalt Material, Soil Material.

 

Abstrak

Material peredam panas merupakan material alami atau sintetis yang diaplikasikan untuk menahan temperatur tinggi. Pada aplikasi sipil, guna mendapatkan kenyamanan dalam melakukan aktivitas sehari-hari material peredam panas banyak dipilih oleh karena kemampuan material tersebut. Di alam, banyak terkandung material peredam panas misalkan tanah, bebatuan mineral, dan lain sebagainya. Raw material tersebut, nantinya akan diolah atau dimanfaatkan langsung untuk diaplikasikan sebagai material peredam panas. Kota sorong merupakan sebuah kota yang memiliki kondisi paling kritis dan telah menjadi tantangan penting bagi banyak kota dalam permasalahan pulau panas perkotaan. Kondisi tersebut memacu timbulnya sebuah fenomena Urban Heat Island (UHI). Dalam upaya untuk mengurangi panas yang ditimbulkan, digunakan berbagai macam material untuk diaplikasikan di beberapa hal. Material tersebut diantaranya Material Beton Cor, Material Aspal, Material Tanah. Dalam penelitian ini, performa material dalam mengurangi panas ditentukan untuk ketiga material tersebut. Alat ukur yang digunakan adalah alat ukur yang umum digunakan untuk mengukur temperatur. Pengukuran dilakukan mulai dari pagi sampai malam. Hasil yang didapatkan bahwa material beton cor memiliki performa lebih baik dibanding dengan material jenis lain jika diaplikasikan sebagai atap dalam mengurangi panas. Sedangkan material aspal merupakan material yang baik jika diaplikasikan sebagai material jalan. Dengan temperatur rata-rata yang dihasilkan masing-masing material pagi= , siang= , sore= , dan malam  dan pagi= , siang= , sore= , dan malam .

Kata Kunci: Urban Heat Island (UHI), Material Beton Cor, Material Aspal, Material Tanah.


Keywords


Urban Heat Island (UHI), Cast Concrete Material, Asphalt Material, Soil Material.

Full Text:

PDF

References


Anugraha, R. B., & Mustaza, S. (2010). Beton ringan dari campuran Styrofoam dan serbuk gergaji dengan semen Portland 250, 300 dan 350 kg/m3. Jurnal Aplikasi Teknik Sipil, 8(2), 57-66.

Asphalt Institute. (1994). Performance graded asphalt binder specification and testing. Lexington, KY: Asphalt Institute.

Badan Standarisasi Nasional. (2002). SNI 03-2847-2002 Standar Tata Cara Perhitungan Struktur Beton Untuk Bangunan Gedung (Beta Version). Bandung: ICS.

Brennen, M., Tia, M., Altschaeffl, A. G., & Wood, L. E. (1983). Laboratory investigation of the use of foamed asphalt for recycled bituminous pavements. Transportation Research Record, (911).

El-Mir, A., Assaad, J. J., Nehme, S. G., & El-Hassan, H. (2022). Correlating strength and durability to time-temperature profiles of high-performance mass concrete. Case Studies in Construction Materials, 16, e01055.

Endawati, J., & Widuri, L. D. D. (2014). Pengaruh Panas Hidrasi Beton Dengan Semen Type II Terhadap Ketebalan Elemen Beton. Jurnal Teknik Sipil dan Perencanaan, 16(2), 183-194.

Khamchiangta, D., & Dhakal, S. (2020). Time series analysis of land use and land cover changes related to urban heat island intensity: Case of Bangkok Metropolitan Area in Thailand. Journal of Urban Management, 9(4), 383-395.

Kushartomo, W. (2002). Pengaruh Lama Waktu Pemanasan Mortar Terhadap Produksi Kapur Bebas. Prosiding Pertemuan Ilmiah Ilmu Pengetahuan dan Teknologi Bahan 2002.

Landsberg, H. E. (1981). The Urban Climate. London: The Academic Press.

Nguyen, M. H., Nishio, S., & Nakarai, K. (2022). Effect of temperature on nondestructive measurements for air permeability and water sorptivity of cover concrete. Construction and Building Materials, 334, 127361.

Nida, A. D., Burhan M. K., & Ozcan, A. (2022). Performance of glass powder substituted slag based geopolymer concretes under high temperature. Construction and Building Materials, 331, 127318.

Pomerantz, M., Akbari, H., Chang, S. C., Levinson, R., & Pon, B. (2003). Examples of cooler reflective streets for urban heat-island mitigation: Portland cement concrete and chip seals.

Shi, W., Zhang, S., Wang, M., & Zheng, W. (2018). Design and performance analysis of soil temperature and humidity sensor. IFAC-PapersOnLine, 51(17), 586-590.

Sofyan, S. E., Hu, E., Kotousov, A., & Riayatsyah, T. M. I. (2020). A new approach to modelling of seasonal soil temperature fluctuations and their impact on the performance of a shallow borehole heat exchanger. Case Studies in Thermal Engineering, 22, 100781.

Wei, K., Shi, W., Ma, B., Shi, J., Wang, S., Cheng, P., & Liu, Z. (2022). Low-temperature performance of asphalt based on temperature stress tests in dynamic cooling conditions. Materials Today Communications, 103185.

Xu, Z., Li, J., Qian, H., & Wu, C. (2022). Blast resistance of hybrid steel and polypropylene fibre reinforced ultra-high performance concrete after exposure to elevated temperatures. Composite Structures, 115771.

Yang, A., Duan, Y., & Peng, M. (2022). Effects of temperature and pressure on the mechanical and thermodynamic properties of high-boride WB4 from first-principles predictions. Materials Today Communications, 103187.

Zhang, L., Ma, R., Lai, J., Ruan, S., Qian, X., Yan, D., ... & Wang, S. (2022). Performance buildup of concrete cured under low-temperatures: Use of a new nanocomposite accelerator and its application. Construction and Building Materials, 335, 127529.

Zheng, C., Li, R., Hu, M., & Zou, L. (2019). Determination of low-temperature crack control parameter of binding asphalt materials based on gray correlation analysis. Construction and Building Materials, 217, 226-233.




DOI: https://doi.org/10.37950/ijd.v4i2.251

Refbacks

  • There are currently no refbacks.


 

 

View my State

 

International Journal of Demos (IJD) is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.